سعادة البروفيسور
شينيا ياماناكا
الفائز (بالاشتراك) بجائزة الملك فيصل العالمية
للطب لعام 1432هـ/2011م

الحفل الثالث والثلاثون
الأحد 8/4/1432هـ الموافق 13/3/2011م

صاحب السمو الأمير نايف بن عبد العزيز
النائب الثاني لرئيس مجلس الوزراء
وزير الداخلية
 أصحاب السمو الأمراء
 أصحاب الفضيلة والمعالي والسعادة

إنه لشرف عظيم أن أنال جائزة الملك فيصل العالمية للطب لعام 2011م، ويزيدني تشرفًا أن
يشاركني الفوز بها الدكتور جيمس تومسون الذي كان أول من أنتج خلايا جذعيّة من أجنة البشر في
عام 1988م، ثم نجح في إنتاج خلايا جذعيّة محفزة من الخلايا البشرية البالغة، وذلك في الوقت
نفسه الذي تمكنت - مع فريقي - من إنتاجها عام 2007م. وقد شجعتني إنجازاته على العمل في
إعادة برمجة الخلايا. وأود أن أعبر عن تقديري لمؤسسة الملك ولجنة الاختيار للجائزة.

منذ عدة سنوات مضت، كتبت مقالة في صحيفة يابانية طرحت فيها بعض الأفكار ومنها: أن
العلوم هي عملية نزع لطبقات من الأقنعة التي تغطي الحقيقة. وكلما نزع العالم قناعاً، تكشف له
قناع آخر. ولكن العالم يستطيع أحياناً، إذا توافر له قدر من الحظ، اكتشاف الحقيقة عندما
يرفع غطاء معينًا عنها. وعندئذ ينشر ذلك الباحث المحظوظ نتائج دراسته في مجلة علمية كبرى.
فيكتسب شهرة واسعة. يجب أن ننسى أن إزالة كل قناع من الأقنعة قبل الكشف عن الحقيقة لا يقل أهمية. ولذلك ليس من العدل أن يذهب الثناء كله لذلك العالم المحظوظ.

إسمحوا لي - وانا أقبل بكل احترام وتقدير، جائزة الملك فيصل العالمية للطب - أن أؤكد بأن التي ذكرتها لم تتغير. فإنتجنا للخلايا الجذعية المحفزة متعادلة الأغراض بني على نتائج سابقة لعدد كبير من الباحثين في مجال إعادة برمجة النواة، إضافة إلى عدد لا حصر له من الباحثين في المجالات الأخرى ذات العلاقة. وقد أسعدني الحظ اليوم بأن أكون فائزاً مشاركاً بجائزة الملك فيصل العالمية. وهو فوز لم يكن ليتحقق لو لا النتائج التي توصل إليها عدد كبير من الباحثين من خلال العمل الشاق، ومنهم الدكتور تومسون، ولولا جهود زملائي الذين قاموا بالتجارب. ويسرني كذلك أن أعبر عن عظيم امتناني لأسرتي التي ساندتني بسخاء. فلولا جهود هؤلاء الناس جمياعاً لما تمكنت من تحقيق ما حققته. إن تقنية تحفيز الخلايا الجذعية متعددة الأغراض مازالت في بدايتها، بيد أن إمكانية تطبيقها واستخدامها في الطب هائلة. ولكن أأماننا تحديات عديدة يجب التغلب عليها قبل أن نتمكن من تطبيق تلك التقنية في الطب التعويضي واكتشاف عقاير جديدة. وسوفي أواصل جهدي بالتعاون مع زملائي ومع العلماء الآخرين حتى تصبح هذه التقنية مفيدة حقاً للمرضى.

أكرر شكري لكم.
TRANSLATION

Acceptance Speech
Prof. Shinya Yamanaka

Co-Winner of the 2011
King Faisal International Prize for Medicine

33rd Awards Ceremony
Sunday 13 March 2011 (8.4.1432H)

HRH Prince Nayef Ibn Abd Al-Aziz Al-Saud
Second Deputy Premier and
Minister of Interior
Your Highnesses
Your Excellencies
Distinguished Guests

It is a tremendous honor to receive the 2011 King Faisal International Prize for Medicine. I feel more honored because the co-winner of this prize is Dr. James Thomson, who generated human embryonic stem (ES) cells in 1998 and reported the generation of human induced stem (iPS) cells at the same time when my research group did in 2007. His achievement greatly encouraged me to work on cellular reprogramming. I would like to express my heartfelt appreciation to both the King Faisal Foundation and to the selection committee.

Several years ago, I contributed an essay to a Japanese newspaper, which included the following thoughts: "Science is a process of stripping away the layers of veils that cover up the truth. When a scientist lifts one veil, the researcher often discovers yet another. However, sometimes a scientist with the right amount of luck suddenly discovered the truth upon pulling away a certain veil. This fortunate researcher then publishes a paper in a top-notch
journal and is widely acclaimed. We must not forget that the act of removing each veil is equally important. It is unfair that only the lucky scientist receive all of the praise."

Humbly accepting the King Faisal International Prize for Medicine, I would like to stress that those thoughts remain unchanged. The generation of iPS cells is based on the findings of numerous scientists in the field of nuclear reprogramming, as well as countless researchers in many other related fields. Today, I have the good fortune to be here as a co-winner of the prize, thanks to the hard-earned results achieved by many researchers, including Dr. Thomson, and the efforts by many of my colleagues who have devotedly performed experiments. I would also like to express my deepest gratitude to my family who generously support me. Without those people, I could never have made the achievement.

iPS cell technology is still in its infancy. Its potential use and applications in medicine are enormous, but there are also many challenges which need to be overcome before it can be successfully applied to the discovery of new drugs and regenerative medicine. I will pursue my research with other scientists and my colleagues so that we can truly put iPS cell technology to use for patients.