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     It is a great honor to receive this award, and I would like to use this 

occasion to thank the King Faisal International Prize Committee, the 

professors who submitted my nomination, and the organizers who planned 

this event. I am receiving this prize in part for my discovery that a quantum 

computer, a hypothetical machine which I hope will be built sometime later 

this century, could factor large numbers into primes much more quickly than 

a conventional digital computer. As with most mathematical and scientific 

discoveries, my discovery of the factorization algorithm did not proceed 

from a vacuum, but depended on a’ great number of previous discoveries. I 

would like to trace for you the history of one sequence of discoveries leading 

to my research. I do this both in the hope that it illustrates better the process 

of scientific discovery, and also in the possibly mistaken belief that 

mentioning at this ceremony the names of researchers whose work was 

essential to my discovery goes some little way towards compensating them 

for not being here. 

     I start with the concept of an algorithm. An algorithm is a step-by-step 

procedure that can be followed mechanically to perform a computation. As 



computers have no real insight, it is necessary to first have an algorithm for a 

problem in order to program a computer to solve the problem. The English 

word algorithm is derived from the name of the great Arabic mathematician 

Muhammad Ibn Musa al-Khwarizmi, who introduced the decimal numerals 

in the ninth century. The word algorithm originally meant the procedures for 

performing arithmetic using decimal numerals, and later came also to mean 

procedures for performing other computations. 

     David Hilbert was a leading mathematician in the early twentieth century, 

one of whose gifts was for identifying problems which would be fruitful to 

attack. In 1928 he posed three problems in the foundations of mathematics, 

the last of which asked whether an algorithm existed which would determine 

whether a mathematical proposition was true or false. It was shown in 1936 

that no such algorithm could exist; on the way to this result, four papers 

were written that drew a distinction between computable and non- 

computable functions. These papers, by Alonzo Church, Stephen Kleene, 

Emil Post and Alan Turing, contained three completely different definitions 

of what it meant for a function to be computable. It was soon shown that 

these three different definitions led to the exact same class of computable 

functions. This led Church and Turing to propose that this was the natural 

class of computable functions; this is now called the Church-Turing thesis. 

After the first computers were built, it became evident that the distinction 

between computable and non-computable functions was much too coarse for 

use in practice. If one needs to obtain a solution to a problem, it is not much 

use to know that the solution is computable in theory, if the computation 

would take too long to ever be completed in practice. It gradually became 

clear that some means of characterizing efficiently computable functions 

was needed. In the 1960’s and 1970’s computer scientists, most particularly 

Stephen Cook and Richard Karp, arrived at functions computable in 

polynomial-time; computable functions seem to be computable reasonably 

efficiently in practice; additionally, the class of polynomial time as a good 

compromise between theory and practice. Most natural time - computable 



functions had enough structure that interesting theorems could be proved 

about it. Of course, for the definition of functions computable in polynomial 

time to be universally applicable, it must be independent of the machine 

used for computation. This led to a strengthening of the Church - Turing 

thesis; which strengthening says that any function computable by any means 

can also be computed by a digital computer, while incurring only a 

polynomial amount of extra overhead. It was a great surprise to computer 

scientists that quantum computers appear to violate this strengthened 

Church-Turing thesis. 

Until the investigation of quantum computation, it was not widely realized 

that the Church-Turing thesis, as well as its strengthening, are in truth 

statement about physics and not mathematics. To show that a digital 

computer can simulate any possible computer, one has to consider all 

computers which might exist in the physical world, and it is therefore the 

laws of physics which constrain the possible machines which might be built. 

If one were to look for a counterexample to the strengthened Church-Turing 

thesis, one should thus look for an area of physics which cannot be 

simulated efficiently on digital computers. One such area is quantum 

mechanics. It was observed by Yuri Manin, in 1980 in the Soviet Union, and 

by Richard Feynman, in 1982 in the United Sates, that it is extremely 

expensive to simulate quantum mechanics using a digital computer; and they 

proposed that quantum computers might be much more efficient at this task. 

In 1985, David Deutsch asked the question of whether quantum computers 

might be more efficient than digital computers for other computational tasks. 

This question was further addressed by Deutsch, Richards Jozsa, Ethan 

Bernstein, Umesh Vazirani, and finally Daniel Simon; these researchers 

found successively better examples of problems which quantum computers 

could solve more quickly than classical computers. None of these problems, 

however, was interesting in its own right. While examining Simon’s paper, I 

realized that the key to his algorithm was periodicity structure certain 

functions he was considering. Since I knew that periodicity was related to 

the problem of factoring large numbers into the product of primes, this led 

me to start looking for the factoring algorithm on a quantum computer. The 



difficulty of factoring is a crucial component of modern cryptography, so my 

discovery of the factoring algorithm launched the field of quantum 

computation, which had previously been a sideline studied by only a few 

people, into the spotlight. 

What conclusion can be drawn from this brief history? I think the main 

conclusion is that the directions science will move in can rarely be foreseen. 

It appears that David Hubert initially thought that there would be an 

algorithm for determining the truth for propositions. David Deutsch started 

investigating quantum computing in relation to questions about the 

foundations of quantum mechanics which quantum computing has failed to 

shed much light upon. Daniel Simon discovered his quantum algorithm by 

trying to prove that quantum computers were no more powerful than 

classical computers. And when I started to look at quantum computing, I did 

not expect it would be related to prime factorization. This unpredictability of 

science makes it very difficult to answer one of the questions which I am 

asked most frequently: namely, when will useful quantum computers be 

built? It is also one of the things that makes science so interesting. 

Thank you 


