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INTRODUCTION

The King Faisal Foundation continues the traditions of Arabic and
Islamic philanthropy, as they were revitalized in modem times by King
Faisal. The life and work of the late King Faisal bin Abd Al-Aziz, son of
Saudi Arabia’s founder and the Kingdom’s third monarch, were
commemorated by his eight sons through the establishment of the
Foundation in 1976, the year following his death. Of the many
philanthropic activities of the Foundation, the inception of King Faisal
International Prizes for Medicine in 1981 and for Science in 1982 will be
of particular interest to the reader of this book. These prizes were
modeled on prizes for Service to Islam, Islamic Studies and Arabic
Literature which were established in 1977. At present, the Prize in each
of the five categories consists of a certificate summarizing the laureate’s
work that is hand-written in Diwani calligraphy; a commemorative 24-
carat, 200 gram gold medal, uniquely cast for each Prize and bearing the
likeness of the late King Faisal; and a cash endowment of SR750,000
(US$200,000). Co-winners in any category share the monetary award.
The Prizes are awarded during a ceremony in Riyadh, Saudi Arabia,
under the auspices of the Custodian of the Two Holy Mosques, the King
of Saudi Arabia.

Nominations for the Prizes are accepted from academic institutions,
research centers, professional organizations and other learned circles
worldwide. After preselection by expert reviewers, the. Short-listed
works are submitted for further, detailed evaluation by carefully selected
international referees. Autonomous, international specialist selection
committees are then convened at the headquarters of the King Faisal
Foundation in Riyadh each year in January to make the final decisions.
The selections are based solely on merit, earning the King Faisal
International Prize the distinction of being among the most prestigious of
international awards“to physicians and scientists who have made
exceptionally outstanding advances which benefit all of humanity.

(Excerpt from Introduction to ‘Articles in Medicine and Science 17
by H.R.H. Khaled Al Faisal,

Chairman of the Prize Board and

Director General of King Faisal Foundation)



2006 Prize Awards in Medicine and Science
The 2006 awards were presented in April 2006

The Prize for Medicine (Topic: Biology of Vascular Inflammation)
has been awarded to: Professor Michael Anthony Gimbrone, Jr.
(USA)

Professor of Pathology, Harvard Medical School, and Chairman of
the Department of Pathology at Brigham and Women's Hospital.
Professor Gimbrone, Jr., has more than 250 publications in
renowned international journals over the past 4 decades. He has
made fundamental contributions to the field of vascular biology.
He has pioneered the culturing of human endothelial and smooth
muscle cells, and discovered endothelial leucocyte adhesion
molecules. He identified three genes with potential arthroprotective
activities. He developed a novel in vitro flow model to simulate
pulsatile shear stress waveforms encountered by the endothelium
in the arterial circulation which reveals the unique responsiveness
of endothehal cells.

The prize for Science (Topic: Mathematics) has been awarded jointly to:
Professor Simon Kirwan Donaldson (UK), President of the
Institute of Mathematical Sciences, and Professor of Mathematics
at Imperial College, London and Professor Mudumbai Seshachalu
Narasimhan (India) Honorary Fellow, Tata Institute of
Fundamental Research in India for their seminal contributions to
theories which have strengthened the links between mathematics
and physics, and helped provide a rigorous foundation for physical
theories giving a very good description of the laws of matter at the
sub-nuclear level. This has helped establish strong ties with the
formulation of quantum chromodynamics for which the King
Faisal Prize was given last year (in physics).
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Synopsis of Achievements
Professor Michael Anthony Gimbrone, Jr.

Professor Michael A. Gimbrone Jr. is one of the world's most
accomplished and creative vascular biologists. Born in Buffalo, New
York (U.S.A.) in 1943, he received his B.A. degree in Zoology (Summa
cum laude) from Cornell University and his M.D. degree (Magna cum
laude) from Harvard Medical School. After completing an Internship in
Surgery at the Massachusetts General Hospital and a Research
Fellowship at the Children's Hospital Medical Center in Boston, he
became a Staff Associate at the National Cancer Institute in Bethesda,
Maryland. He then pursued Residency Training in Pathology at the Peter
Bent Brigham Hospital in Boston in 1974, and was appointed an
Instructor in Pathology at Harvard Medical School in 1975 and
subsequently rose through the academic ranks to Professor of Pathology
in 1985. He established and currently directs the Center for Excellence in
Vascular Biology at the Brigham and Women's Hospital in Boston, and
is the Elsie T. Friedman Professor of Pathology at Harvard Medical
School and Chairman of the Department of Pathology at the Brigham
and Women's Hospital.

Professor Gimbrone's outstanding contributions to the field of vascular
biology, particularly the biology of vascular inflammation, have
established the conceptual framework for understanding the mechanistic
role of the endothelial lining of the cardiovascular system in diseases
such as atherosclerosis and its complications~- heart attack and stroke.
He pioneered the growth of human vascular endothelial and smooth
muscle cells in vitro; was the first to show that endothelial cells produce
prostaglandins and other mediators that influence the function of blood
platelets and leukocytes; established the paradigm of endothelial
activation by. pro-inflammatory cytokines and discovered inducible
endothelial-leukocyte adhesion molecules that are important in
inflammation and atherogenesis. His laboratory also identified the first
biomechanically activated “shear stress-response element” in the
promoter of a human gene, and has gone on to apply high-throughput
genomic analyses to identify "athero-protective genes" that appear to
confer resistance to pro-inflammatory stimuli and the development of
atherosclerotic lesions in the cardiovascular system. These studies point
the way to new methods for the diagnosis, treatment and prevention of
vascular disease.



These seminal contributions have appeared in more than 250
publications, reviews and book chapters, and have earned Professor
Gimbrone worldwide recognition. Among the numerous awards received
by Gimbrone are: the Established Investigatorship Award from the
American Heart Association, the J. Allyn Taylor International Prize in
Medicine, the Warner Lambert/Parke Davis Award in Experimental
Pathology, the Bristol-Myers Squibb Award for Distinguished
Achievement in Cardiovascular Research, the Pasarow Foundation
Award in Cardiovascular Disease, the Basic Research Prize from the
American Heart Association, and a MERIT Award from the U.S.
National Heart, Lung and Blood Institute. His honors also include an
impressive list of distinguished visiting professorships and lectureships
in the U.S.A., Europe and Japan, memberships of editorial boards of
leading medical journals, and election to prestigious institutions such as
the National Academy of Sciences (U.S.A.), the American Academy of
Arts and Sciences, and the Institute of Medicine of the National
Academy of Sciences. He is a past President of the American Society for
Investigative Pathology and the founding President of the North
American Vascular Biology Organization.



Biology of Vascular Endothelium in Health and Disease:
New Insights

Michael A. Gimbrone, Jr., M.D.
Professor of Pathology, Harvard Medical School
Chairman, Department of Pathology
Brigham and Women’s Hospital
Boston, Massachusetts, U.S.A

Vascular Biology: An Emerging Discipline.

Essential to any integrated functional view of the cardiovascular
system is an appreciation of the vasculature as more than simply a
branched array of varying sized tubes that convey blood. In recent
years, blood wvessels, per se, have become the focus of
multidisciplinary studies that have greatly expanded our
understanding of their intrinsic functions, and, in the process, many
of our working concepts of cardiovascular biology and medicine
have been redefined—and a new discipline, Vascular Biology, has
emerged. The anatomist, probing the ultrastructure of arteries,
capillaries and veins, has uncovered specializations in luminal
endothelial membranes, microvesicles, cell-cell junctions and
cytoskeletal architecture, suggestive of regionally specialized
functions. The physiologist, measuring systemic indices such as
blood pressure, as well as local phenomena such as regional
permeability, has revealed elaborate regulatory networks that
impact on cardiac performance and peripheral tissue nutrition. The
pathologist, investigating the mechanisms of complex vascular
diseases such as atherosclerosis, has uncovered elements shared in
common with basic “response-to-injury” processes such as
inflammation, wound healing and angiogenesis. And, the vascular
cell biologist, by selectively dissociating the blood vessel into its
component cell types --- intimal endothelial cell, medial smooth
muscle cell (or pericyte) and adventitial fibroblast, has enabled the
detailed investigation of each, in biochemical, cell biological and
molecular biological terms. This latter approach has contributed to
the formulation of a highly dynamic working concept of a blood
vessel as a “community of cells” engaged in multiple, reciprocal
interactions among themselves, and with circulating
macromolecules (e.g., lipoproteins, hormones) and blood elements
(e.g., leukocytes, erythrocytes, platelets). In health, an orderly
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balance of these interactions maintains homeostasis within the
cardiovascular system, whereas, imbalances in the same
interactions, in response to pathophysiologic stimuli, can
contribute to the initiation and progression of vascular disease.

Vascular Endothelium: A Multifunctional Interface.

The vascular endothelium, the single-cell-thick, continuous lining
of the circulatory system, forms a multifunctional interface
between circulating blood and the various tissues and organs of the
body. It constitutes a selectively permeable barrier for
macromolecules, as well as non-thrombogenic container that
actively maintains the fluidity of blood. It is a metabolically active
tissue, serving as the source of multiple factors (peptides, proteins,
lipids) that are critical for normal homeostasis. These include
growth stimulators and inhibitors (e.g., platelet-derived growth
factor, transforming growth factor-beta), fibroblast growth factor,
and heparin-like glycosaminoglycans); vasoconstrictors and
vasodilators (e.g., endothelin-1, angiotensin II, and endothelial-
derived relaxing factors, such as nitric oxide); the various pro- and
anti-thrombotic factors (e.g., tissue factor, thrombomodulin, and
von Willebrand factor); fibrinolytic activators and inhibitors (e.g.,
tissue plasminogen activator, urokinase, and plasminogen activator
inhibitor-1); potent arachidonate metabolites (e.g., prostacyclin);

-leukocyte adhesion molecules (e.g., E-Selectin, P-Selectin, ICAM-

1, and VCAM-1) and multiple cytokines (e.g., IL-1, IL-6, IL-8,
MCP-1, and GM-CSF). This partial list underscores the functional
diversity of the endothelial interface in normal physiology and also
illustrates its potential contributions to pathophysiological
processes in vascular disease.

Endothelial  Dysfunction and the Pathogenesis of
Atherosclerosis.

The involvement of vascular endothelium in complex vascular
disease processes such as atherosclerosis has been recognized since
the time of Virchow (circa 1855), but a working knowledge of the
relevant pathobiology has been developed only recently, largely as
a result of the application of modern cellular and molecular
biological techniques. It has been our laboratory’s working concept
that the vascular endothelium is a dynamically mutable interface,
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whose structural and functional properties are responsive to a
variety of stimuli, both local and systemic, and further, that its
phenotypic modulation to a dysfunctional state can constitute a
pathogenic risk factor for vascular diseases. In the arterial wall,
certain consequences of endothelial dysfunction are directly related
to the pathogenesis of atherosclerosis and its complications.- These
include: altered vascular reactivity and vasospasm; altered intimal
permeability to lipoproteins; enhanced mononuclear leukocyte
recruitment and intimal accumulation as foam cells; altered
vascular cell growth regulation (e.g., decreased endothelial
regeneration, increased smooth muscle proliferation); and altered
hemostatic/fibrinolytic balances (favoring thrombin generation,
platelet and fibrin deposition). Pathophysiologic stimuli of arterial
endothelial ~ dysfunction that are especially relevant to
atherogenesis include: activation by cytokines and bacterial
endotoxins; infection (and possible transformation) by viruses;
advanced glycosylation endproducts (AGEs) that are generated in
diabetes and with aging; hyperhomocysteinemia; and
hypercholesterolemia (per se), as well as oxidized lipoproteins and
their components (e.g., lyso-phosphatidylcholine). In addition to
these humoral stimuli, it is now clear that biomechanical forces,
generated by flowing blood, can also influence the structure and
function of endothelial cells, and even modulate their expression of
pathophysiologically relevant genes.

The possibility that hemodynamic forces can act as
pathophysiologic stimuli for endothelial dysfunction provides a
conceptual rationale for the long-standing observation that the
earliest lesions of atherosclerosis characteristically develop in a
non-random pattern, the geometry of which correlates with branch
points and other regions of altered blood = flow.

Biomechanical Forces Generated by Blood Flow Can Regulate
Genes Important in Inflaimmation and Atherosclerosis in
Vascular Endothelial Cells.

In the early 1980’s, our laboratory began a long-term collaboration

with bioengineering colleagues at the Massachusetts Institute of
Technology with the goal of recreating, in the environment of a
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cultured endothelial cell, the fluid mechanical stimuli that are
present within the cardiovascular system in vivo. Early work
focused on the design of special apparatuses that could generate
well characterized fluid shear stresses (laminar, disturbed laminar,
turbulent flows) on the surfaces of cultured human and animal
endothelial monolayers, over a broad dynamic range that could
mimic arterial and-venous, as well as microvascular, circulatory
dynamics. Utilizing this approach, our research group obtained the
first direct evidence that endothelial cell structure and function
were dynamically responsive to applied mechanical forces (in
particular, cell shape, actin cytoskeletal organization and cell cycle
regulation), and characterized certain of the stimulus-
response/second messenger pathways involved.

In the early 1990’s, our group extended these studies to the level of
the nucleus by the discovery and characterization of a unique cis-
acting transcriptional regulatory element in the promoter of the
PDGF-B gene that was necessary and sufficient for the induction
of gene expression by biomechanical forces. This “shear stress
response element” (SSRE) also was found in the promoters of
several other pathophysiologically relevant endothelial genes (e.g.,
endothelial nitric oxide synthase, cyclooxygenase-2, tissue
plasminogen activator, ICAM-1) whose expression is sensitive to
physiological levels of shear stress, thus suggesting that it may be
part of a common pathway of gene regulation by mechanical
stimulation. This was further supported by the demonstration of the
activation of the SSRE by other biophysical forces including cyclic
strain. Since the original description of the SSRE in the human
PDGF-B gene, several additional pathways of gene regulation in
endothelium by biomechanical stimuli have been uncovered by our
research group and others.

Prompted by the observation that the earliest lesions of
atherosclerosis (a chronic inflammatory disease of arteries)
characteristically develop in a non-random pattern in the
vasculature, (with lesion-prone areas localized to arterial branch
points and lesion-protected areas localized to straight tubular
geometries), we hypothesized that this pattern of disease
development reflects an underlying pattern of differential
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regulation of endothelial gene expression by fluid mechanical
forces. Utilizing high-through-put differential gene display, our
laboratory has systematically compared the patterns of endothelial
genes regulated by defined biomechanical stimuli (steady laminar
flow versus disturbed laminar and turbulent flows). This novel
strategy led to the identification of at least three endothelial genes
(endothelial nitric oxide synthase, cyclooxygenase-2, Mn-
superoxide dismutase) which are selectively upregulated by steady
laminar but not turbulent shear stresses, and whose anti-
vasospastic, anti-inflammatory, anti-oxidant activities would be
predicted to be “athero-protective”. Interestingly, the prediction
that COX-2 would function as an “athero-protective gene” in
human endothelium has been borne out by the recent adverse
human clinical trials data with selective COX-2 inhibitors (such as
Vioxx) showing a markedly increased cardiovascular risk. In
addition, several new human genes, which show differential
regulation by biomechanical forces in vascular endothelial cells,
have been cloned and their functional roles are currently being
evaluated in both in vitro and in vivo models.
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Genome-Wide Analysis of Proinflaimmatory Phenotype of
Vascular Endothelium and Natural Anti-Inflammatory
Control Mechanisms.

Most recently, our group has harnessed the power of high-density
cDNA microarrays, and newly devised bioinformatics tools, to
accomplish the most comprehensive analysis to date of the
genome-wide “transcriptome” of the human endothelial cell, as
modulated by various biomechanical and biochemical stimuli,
relevant to vascular biology and vascular inflammation. A
dramatic demonstration of the power of this experimental strategy
has been the recreation of the precise hemodynamic waveforms
that occur in distinct anatomical parts of the human carotid artery,
which are characteristically either resistant or susceptible to the
development of atherosclerotic lesions, on the surface of cultured
human endothelial cells, and the analysis of the resultant patterns
of gene expression. Bioinformatic analyses of the comprehensive
expression profiles obtained (encompassing approximately 35,000
distinct genes) revealed that only approximately 100 genes show
significant differential regulation (i.e., up- or down-regulation by
the “atheroprotective” versus “atheroprone” waveforms). Several
of these genes are known to be important in the pathophysiology of
atherosclerosis, including leukocyte adhesion molecules,

.chemokines- and their receptors, growth regulators and anti-

oxidative stress factors. Interestingly, further analysis has
identified biomechanically sensitive transcriptional regulators that
appear to function as “master-switches” for the pro- vs. anti-
inflammatory phenotype in the vascular endothelial cell. Indeed,
one of these transcriptional “switches”, Kruppel-like Factor-2
(KLF2), appears to be a primary regulator of the biomechanically
induced “atheroprotective” phenotype in the human endothelial
cell. Recent studies by our group and others have now established
that KLF2 is sensitive to the Statin class of therapeutic drugs—thus
establishing a direct mechanistic link between these compounds
(currently taken by millions of people worldwide) and athero-
protective effects on the endothelial cell. Further analysis of the
transcriptional programs induced by “atheroprotective” waveforms
should provide new insights into the mechanisms by which
endothelial cells act to maintain vascular integrity in health, and
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potentially will facilitate the development of new classes of
vascular protective drugs for the treatment and prevention of
cardiovascular disease. (Figures 1 & 2).

This novel line of investigation has thus established a new
paradigm of endothelial activation--differential gene regulation by
biomechanical forces, which promises to provide new basic
insights into the molecular mechanisms of host defense and
vascular inflammation. These studies hopefully will find practical
translation to better means for the early detection, effective
treatment, and ultimately prevention of cardiovascular diseases,
including heart attacks and strokes.
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Figure 1: Hemodynamic Analysis of Regions of the Human

Carotid Artery that are Characteristically Resistant or

Susceptible to the Development of Atherosclerotic Lesions.

The wall shear stresses generated by the pulsatile flow of blood in
the vicinity of the bifurcation of human carotid artery were
analyzed by computational fluid mechanics, and prototypic
waveforms characteristic of those present in vivo in
atherosclerosis-resistant and atherosclerosis-susceptible areas were
identified. These biomechanical stimuli were then recreated,
utilizing a Dynamic Flow Device, on the surface of cultured
human endothelial monolayers in vitro, and the patterns of
endothelial gene regulation were defined, utilizing high-throughput
genomic analysis and bioinformatics techniques (see Reference
12).
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Figure 2
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Figure 2: Biomechanical Stimulation of Atheroprotective
Phenotype in Vascular

Endothelium and its Mimicry by Therapeutic Agents.
Biomechanical forces generated by blood flow in certain vascular
geometries that are resistant to the development of atherosclerotic
lesions (see Figure 1) act to regulate the expression of
“atheroprotective genes”. These genetic programs result in
functional changes that render the vascular endothelial lining in
these regions resistant to inflammatory, thrombotic and oxidative
stresses. The Statin class of cardiovascular drugs, which are known
to prevent atherosclerosis via actions in addition to lipid-lowering,
can act directly on endothelium to mimic this natural
“atheroprotective” biomechanical stimulation. This novel paradigm
of biomechanical stimulation of atheroprotective genes may enable
the discovery of new drugs that will be effective in preventing
atherosclerosis and its complications (see References 13-15).
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Synopsis of Achievements
Professors Simon Kirwan Donaldson
And
M. S. Narasimhan

SIMON DONALDSON and M. S. NARASIMHAN have been jointly
awarded the 2006 King Faisal International Prize for Science. The prize,
presented by the King Faisal Foundation, consists of a gold medal and a
cash prize of US$200,000, which the two recipients will share.

Born in 1957 in Cambridge, England, Simon Kirwan Donaldson received
his Ph.D. in 1983 from Oxford University, under the direction of Michael
Atiyah. Donaldson was a professor at Oxford University and at Stanford
University before becoming a professor at Imperial College, London. He
is now a Royal Society Research Professor at Imperial and also serves as
president of Imperial’s Institute of Mathematical Sciences. His many
honors include the Fields Medal (1986) and the Crafoord Prize (1994).
He is a fellow of the Royal Society, London. Donaldson’s early research
revolutionized four-dimensional differential topology, revealing
surprising new phenomena through the application of ideas from gauge
theory. He has also made foundational contributions to complex and
symplectic geometry and to global analysis of partial differential
equations on manifolds.

Mudumbai Seshachalu Narasimhan was born in 1932 in Thandarai, in
the state of Tamiladu, in India. He received his Ph.D. from the University
of Bombay in 1960, under the direction of Komaravolu
Chandrasekharan. For many years Narasimhan was a professor at the
Tata Institute of Fundamental Research in Mumbai. In 1992, he went to
the International Centre for Theoretical Physics in Trieste, where he
headed the research group in mathematics. He is now an Honorary
Fellow of the Tata Institute of Fundamental Research in India. In 1975
he received the Bhatnagar Prize for Mathematics (1975), which is the
most prestigious award given in India. He also received the Third World
Academy Award for Mathematics in 1987 and is a Fellow of the Royal
Society, London. Narasimhan is a pioneer of the study of moduli spaces
of holomorphic vector bundles on projective varieties. His work on
projectively flat connections was the starting point for the development
of the so-called Kobayashi-Hitchin correspondence linking the
differential and algebraic geometry of vector bundles over complex
manifolds.
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The close connection between the research of the two prize inners is
illustrated by the fact that one of Donaldson’s earliest papers bears the
title “A New Proof of a Theorem of Narasimhan and Seshadri” (Jowrnal
of Differential Geometry, 1983),referring to the landmark paper “Stable
and Unitary Vector Bundles on Compact Riemann Surfaces”, by
Narasimhan and C. S. Seshadri (dAnnals of Mathematics, 1965).
Narasimhan’s paper with S. Ramanan on universal connections
(“Existence of universal connections”, American Journal of
Mathematics, 1961 and 1963) has been very influential in the exchange
of ideas between mathematics and theoretical physics surrounding index
theory and gauge theory. This exchange of ideas is also the context for
much of Donaldson's important work.

From the “Notices of American Mathematical Society” March 2006
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Differential Geometric Methods in
Low-dimensional Topology

Prof. S. K. Donaldson
Department of Mathematics
Imperial College of Science,

Technology and Medicine
Huxley Building, 180 Queens Gate
London SW6 2BZ
U.K.

1 Introduction

This is a survey of various applications of analytical and geometric
techniques to problems in manifold topology. The author has been
involved in only some of these developments, but it seems more
illuminating not to confine the discussion to these.

We begin by recalling the notion of a manifold. Suppose we are provided
with a large collection of small paper discs. Then we can construct a
wide variety of complicated objects by pasting these discs together in
various fashions. Mathematically, the paper discs generalise to disjoint
copies Ua of the unit ball Bn in some fixed Euclidean space Rn, where o
ranges over some index set. The pasting data generalises to a collection
of homeomorphismseap : UOaf — U00 af, where UOaB _ Ua and U0OO
af _ UP are open subsets. Then we form a space M byidentifying, in an
abstract way, each point x in each UOo with its image @a(x) in U00 q,
and such a space is called an n-dimensional manifold. The essential point
is that a manifold is locally modelled on Euclidean space, so we can
ransfer many familiar constructions from multi-dimensional geometry
and calculus to this wider setting. It is important to emphasise that this
notion of a manifold does not just derive from mathematicians fancy, but
grows naturally out of many diverse applications, often in Mathematical
Physics. Most obviously, one formulates General Relativity in terms of a
four-dimensional space-timemanifold.

The basic problem of geometric topology is to classify manifolds. More

precisely, for our discussion, we want to consider manifolds constructed
using differentiable maps (which allow us to do calculus): these lead to
the definition of a “smooth” manifold, and the natural equivalence
relation is that of “diffeomorphism”. So, for each dimension n we are
interested in classifying smooth n-dimensional manifolds up to
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diffeomorphism. For example, in two dimensions, any ellipsoid in R3 is
diffeomorphic to the sphere, but a hyperboloid is not.

This classification problem has two complementary parts. In one
direction, one seeks invariants of manifolds: the oldest example being the
Euler characteristic which is an integer (M) one can assign to any
(compact) manifold M, such that (M) = x(MO0) if M and MO are
diffeomorphic. In the complementary direction, one seeks to construct
diffeomorphisms f: M — MO showing that a pair of manifolds M,M0 are
equivalent, under suitable hypotheses.

Over the 100 years since Poincar’e introduced the notion of a manifold,
and hence this classification problem, many different strands have been
developed. In this article we focus on constructions using differential
geometry and analysis. The interesting feature here is that these methods
call in techniques and ideas from other subjects, which do not ostensibly
enter into the classification problem as we have formulated it. This
means that we consider manifolds with some additional auxiliary
structure such as a Riemannian metric, though this structure may
disappear from the statement of the final result. A striking this, which
probably has deep origins, is that these techniques are usually most
relevant in “low-dimensional” topology, specifically when we consider
n-dimensional manifolds with n <4. In “high dimensions” (n > 5) a very
rich theory was developed, particularly in the period 1950-1970. In brief,
the subject of algebraic topology gives a systematic understanding of
possible invariants and a fundamental result of Smale, the “h-cobordism
theorem” yields a very powerful and general abstract technique for
constructing diffeomorphisms between manifolds with the same
invariants.

2 Two dimensions

The classification of two-dimensional manifolds is comparatively
straightforward and has. been known in some form since the mid 19th.
century. nevertheless it is interesting to see how geometric and analytical
techniques can be brought to bear on this, as a model for developments in
higher dimensions.
Consider first the issue of invariants. Suppose we have a closed surface
S _R3 we can consider the flow of an imaginary fluid on the surface, or
in mathematical terms a vector field v (the velocity field of the fluid)
defined on S and everywhere tangent to S. In this way, we are lead to
study a pair of partial differential equations

div(v)=0, curl(v) =0
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for a tangent vector field v, corresponding to incompressible, irrotational
flows. These are linear equations so the solutions form a vector space of
dimension d(S) (which could a priori be infinite). It turns out that dS) is
finite and is unchanged if we continuously deform the surface in 3-space.
Moreover we can extend the ideas further to an abstract two-dimensional
manifold M equipped with a Riemannian metric. This metric is just the
data required to define lengths and angles between tangent vectors at the
same point and in turn the notions of divergence and curl. There is an
enormous space of possible Riemannian metrics. In local co-ordinates
(i.e. a local identification of the surface with a ball in R2)- say ul, u2-a
metric is given by any functions gij(ul, u2) for i, j = 1, 2, subject only to
the constraint that for each fixed ul, u2 the matrix with entries gij
issymmetric and positive definite. The upshot is that , changing notation,
we now have an integer d(M, g) where g denotes any choice of
Riemannian metric out of this enormous space of possibilities. Now the
crucial thing is that one can show that d(M, g) does not change if we
deform the metric in a continuous fashion.So we conclude that this
dimension is actually an invariant of the manifold M.

All the ideas above are now very well understood. The dimension d is
just2—y(M) where y is the Euler characteristic, which can be defined in
many other ways. The ideas extend to higher dimensions in the form of
“de Rham cohomology” and “Hodge theory”, and the more general
setting involves the machinery of “differential forms™ rather than vector
fields. At a more sophisticated level, one encounters the Dirac equation
for fields of spinors on a manifold, and the Atiyah-Singer index theorem.
One gets many invariants of manifolds, of any dimension, in this way, by
studying the solutions of linear partial differential equations, but broadly
speaking these can all be obtained in other ways, using the tools of
algebraic topology. '

Next we turn.to the complementary question of constructing
diffeomorphisms between 2-dimensional manifolds. Suppose for
example that we want to show that any manifold M with y(M) = 2 is
diffeomorphic to the standard sphere. One geometric approach to this
goes via proving the existence of a particular Riemannian metric on the
manifold. In classical differential geometry one defines, at each point of
a surface in R3 the Gauss curvature of the surface: a natural
generalisation of the notion of the curvature of a curve in the plane. The
content of Gauss’ famous “Theorem Egregium” is essentially that the
Gauss curvature can be defined for any Riemannian metric on a general
2-dimensional manifold M. So we can search for metrics with constant
Gauss curvature and in particular in the case at hand, with Gauss
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curvature 1. Then it is quite an easy exercise in differential geometry to
show that if we have such a metric g on our manifold there is a unique
diffeomorphism f: M — S2 (up to rotations of the sphere) which takes g
to the standard metric: in particular M is indeed diffeomorphic to the
sphere.

So much for the overall strategy of this approach: we are left with the
crucial problem of how to prove the existence of a Riemannian metric of
Gauss curvature 1 on an abstract manifold M2, using only the hypothesis
that y(M) = 2. This can be viewed as solving a complicated nonlinear
partial differential equation for the unknowns gij . The easiest way to
proceed is to bring in another kind of structure, that of a Riemann
surface, but we will not go into details. Suffice it to say that the
hypothesis y(M) = 2 enters through the assertion that there are no non
zero abstract “fluid flows”of the kind considered above, and the
Fredholm alternative from Functional Analysis.

3 Three dimensions

Exciting recent developments make it natural to include some brief
discussion of 3-dimensional manifolds in our account, although this is
not an area the author has contributed to personally.

First, the question of invariants. Over the past twenty years new 3-
manifold invariants of various kinds have been discovered, having
-fundamental connections with geometry. On the one hand there are
invariants such as the Casson invariant and Floer homology groups
which are the 3-dimensional counterparts of the ideas in 4-dimensions
discussed below. On the other hand there are the “Jones-Witten
invariants” which, in Witten’s point of view, arise from certain Quantum
Field Theories.

Second, the question of constructing diffeomorphisms between 3-
manifolds. The famous problem here is the “Poincar’e conjecture” which
is that any simply connected compact 3-manifold is diffeomorphic to the
3-dimensional sphere. This is the natural analogue of the question about
2-dimensional manifolds discussed above, with the “simply connected”
hypothesis in place of the condition on the Euler characteristic. There has
been striking progress on this problem recently, through work of G.
Perelman [5], which makes it seem, very likely that this famous problem
has now been resolved, and the strategy of proof follows that in our two-
dimensional model. A Riemannian metric in higher dimensions has, in
place of the simple Gauss curvature, a complicated curvature tensor.
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From this one forms a slightly simpler object: the Ricci tensor Rij . This
is what enters into Einstein’s formulation of General Relativity, and one
can write down an analogue of Einstein's equation in the context of
Riemannian geometry: Rij = Agij , where A is a constant. In three
dimensions it turns out that the Ricci tensor contains the same
information as the full curvature tensor, and using this it is easy to show
that a simply-connected 3-manifold which admits a solution .of the
Einstein equation is diffeomorphic to the 3-sphere. So the problem is
how to construct such Riemannian metrics.

Perelman’s work follows a strategy developed over many years by R.
Hamilton. One introduces an extra “time” variable t and considers a 1-
parameter family of Riemannian metrics on a 3-manifold satisfying the
evolution equation

ogij
ot =-Rijj.

Starting with an arbitrary initial metric at t = 0 one seeks to show that,
after suitable rescaling, the metrics generated by this evolution equation
converge to a solution of Einstein’s equation. There are immense
difficulties in carrying this through, but it appears that the crucial
problems have been overcome by Perelman. This approach is not limited
to the Poincar’e conjecture. In the 1970’s W.Thurston formulated a
“Geometrisation conjecture” which asserts that any 3-manifold can be
decomposed in a standard and well-controlled way into pieces each of
which admits an Einstein metric or one of a small family of other special
structures. This is a much more wide-ranging conjecture which in a sense
gives a complete classification of 3-manifolds and it is this which is the
natural target for Perelman and Hamilton’s work.

4 Four dimensions
4.1 Invariants

We now turn to four dimensional manifolds, the topic to which the
author has contributed. Standard algebraic topology provides certain
tools. We restrict attention to compact, simply-connected 4-manifolds
with a fixed orientation. Then the algebro-topological data associated to
such a manifold M is the free Abelian group H2(M) and the intersection
form Q, which is a symmetric bilinear form on H2(M). The natural
“grand problem”in the field is to classify, for each algebraic
isomorphism class of the data (H2,Q) the possible diffeomorphism
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classes of manifolds. Roughly speaking, almost nothing was known
about this question until the early 1980°s but now we know a substantial
amount through the emergence of the instanton and Seiberg-Witten
invariants. However the problem itself still seems way out of reach, as
we will discuss further below.

The general strategy by which these invariants are defined follows the
same pattern as in the two-dimensional model discussed above. The
crucial ingredientis the existence of certain geometrical objects and
partial differential equations governing them, which play the role of the
vector field and the irrotational, divergence-free conditions there. As in
that model, the objects arise naturally from considerations in
Mathematical Physics, although now that of fields andelementary
particles rather than fluids.

A great achievement of 19th. century Mathematical Physics was the
formulation of electro-magnetic theory in terms of a pair of vector fields
E,B governed by Maxwell’s equations. Further insight in the 20th.
century lead to the ideas that, first, the equations could be formulated in a
four-dimensional setting, with space and time on an equal footing,
involving a single field tensor F. Second that this field has an essentially
geometric origin. The geometry involves the introduction of a complex
line bundle L over space-time, and the wave-functions of Quantum
Theory are viewed as sections of L. Thus the value y(x) of a wave
function at a point is not naturally a complex number but lies in a
onedimensional complex vector space Lx, and there is no completely
canonical way to identify Lx with C. The basic geometrical structure is a
connection on this line bundle and the field tensor F is the curvature of
this connection. Mathematically, these ideas are underpinned by the
general theory of bundles and connections which had been developed by
differential geometers and which grow naturally out of classical
differential geometry and notions such as the Gauss curvature. In
Physics, these ideas lead to natural generalisations in “Gauge Theory”
where one simply replaces the one dimensional vector spaces Lx by
vector spaces of some fixed higher dimension. (The extension can also
be formulated in the language of symmetry groups such as SU2),
SU(3).)

These general notions of bundles, connections and curvature can be
formulated over manifolds of any dimension but there is a crucial special
feature of 4-dimensions. The field tensor is a skew-symmetric tensor and
in a four dimensionalspace, with a positive definite metric, these skew
symmetric tensors decompose naturally into “self-dual” and “anti-self-
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dual” parts. So we can write F = F+ +F— and we consider the special
condition that F+ = 0. If we go back to make a “space-time
decomposition” and express F in terms of a pair of vector E,B, this
condition is just E = B, but the crucial thing is that the condition
isactually a natural one in four-dimensions, independent of the
decomposition.

Putting these ideas together, we see that if we consider a Riemannian
metric on our 4-manifold M, a bundle E over M and a connection A on
E, we can write down a natural condition

F+A) =0,

for the curvature tensor F(A). This is a partial differential equation for
the connection A. If the dimension of the fibres of E is 1, as in
electromagnetic theory, the equation is linear and we essentially recover
part of the familiar Hodge Theory. But for higher dimensional fibres we
get more subtle, nonlinear equations; the “Yang-Mills instanton
equations”. The basic strategy is to extract invariants of the manifold M
from a study of the solutions (instantons) to these equations.

A variety of mathematical techniques are involved in extracting discrete
invariants from the instantons. On the one hand there are fundamental
analytical results of K. Uhlenbeck which give information about
compactness of the space of solutions. A prerequisite here is the fact that
the instanton equations are elliptic equations and roughly speaking
Uhlenbeck’s work allows the extension of standard ideas for linear
elliptic equations to this nonlinear setting. On the other hand, there is a
general and more abstract body of ideas which allowone to extend
techniques of differential topology to certain infinite dimensional
“Fredholm” problems. In particular, under suitable technical hypotheses,
one gets discrete invariants from the solution spaces to the equations in
much the same way as éne can define the degree of a map f: Sn — Sn by
“counting” (with signs) the points in a generic preimage f=1(y) (i.e. by
counting the solutions of the equation f(x) = y). Of course the crucial
thing is that these discrete invariants are unchanged by continuous
deformations of the data. This translates in our problem to independence
of the choice of Riemannian metricon M.

The upshot of all this technical work was that one obtained, under
suitable hypotheses, new invariants of M which took the form of a
collection of polynomials functions on the homology group H2(M)[2].
The fact that we get a collection of polynomials comes from the fact that
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we have a choice of bundles E to consider. In the late 1980°s these
instanton invariants were used to give much new information about the
“grand problem” above: for example by showing that certain large
families of 4-manifolds with the same intersection form where all distinct
up to diffeomorphism.

In 1994, Seiberg and Witten introduced some different equations in four
dimensions, guided by considerations from Quantum Field Theory [7].
These share many of the features of the instanton equations, in that they
are formulated in terms of a connection on a bundle over the 4-manifold,
but now the bundle has fibre dimension 1, just as in electromagnetism.
The new subitlety is that one considers a spinor field v in addition to the
connection on the bundle.This extra field can be thought of a something
like the wave function of quantum mechanics but its’ spinorial nature is
crucial. The Seiberg-Witten equations take the shape

F+A)=v_ v DAy =0,

where DA is the linear Dirac operator coupled to the connection and y_y
denotes a certain quadratic form mapping spinors to self-dual 2-forms.
Invariants of the underlying 4-manifold X can be extracted from the
solutions to the Seiberg-Witten equations in a similar manner to the
instanton case, but the newer theory has some decisive technical
advantages. The invariants that result take the shape of certain
distinguished classes (“basic classes”) ki 2 H2(X) with associated
integers ni. Witten made a wide ranging conjecture, backed up by almost
overwhelming evidence from examples, as to precisely how these
Seiberg-Witten invariants determine the polynomials given by the
instanton theory. With these insights, the extent of the information which
can be obtained from these methods has become much clearer, and the
whole theory seems to have attained a reasonably mature form. (There is
scope for exploiting the older instanton theory, and its relation with the
Seiberg-Witten theory, particularly in applications of these ideas to 3-
dimensions, as in recent work of Kronheimer and Mrowka {4], which
establishes a result very like the Poincar’e conjecture for a slightly
different class of 3-manifolds.)

4.2 Constructing diffeomorphisms
As we have emphasised in this article the problem of classifying
manifolds has two complementary parts. In four dimensions we have

now a good supply of invariants but what is almost entirely lacking is
any way of constructing diffeomorphisms between manifolds, under
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suitable hypotheses on the invariants. We can write down many families
of 4-manifolds with the same instanton and Seiberg-Witten invariants
and we have no idea whether they are diffeomorphic or not. Something
completely new is almost certainly needed to make substantial further
headway with the “grand problem”, but whether this will come in 1 year,
10 years or 100 years is anybody’s guess. The only progress so far in this
direction seems to lie in the special case of symplectic 4-manifolds. A
symplectic structure on a 4-manifold is a closed 2-form ® which is
everywhere nondegerate, a notable supply of examples being furnished
by complex algebraic surfaces with Kahler metrics. Until the 1980°s
there were as many inaccessible questions about symplectic 4-manifolds
as for the general case. But now we know a great deal more, principally
through fundamental advances of Gromov and Taubes. These involve a
network of ideas closely related to those above. In one direction,
Gromov’s fundamental paper [3] introduced the wuse of
pseudoholomorphic curves as a tool to study symplectic manifolds. This
development has had extremely wide-ranging consequences and uses
some of the general ideas exploited in the instanton and Seiberg-Witten
theories. One result of Gromov is particularly relevant to the
classification problem because he shows that a symplectic 4-manifold
satisfying suitable hypotheses, notably the existence of a certain kind of
embedded 2-sphere, must be equivalent to the standard complex
projective plane. The proof goes by moving the 2-sphere in a family of
pseudoholomorphic curves sweeping out the manifold, and is quite
parallel to arguments from the classification of algebraic surfaces. In the
other direction, Taubes [6] discovered a fundamental connection between
Gromov’s pseudoholomorphic curves and the Seiberg-Witten equations
and was able to use this to establish the existence of the required
embedded sphere. Some of the author’s recent work [1] has been
motivated in part by the desire to extend this technique to more general
4-manifolds, but so far without very conclusive results.
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1. Moduli problem for vector bundles.

The theory of moduli of (algebraic) vector bundles is an outgrowth of
the classical theory of the Jacobian of an algebraic curve. The set of
isomorphism classes of holomorphic (or algebraic) line bundles of
degree 0 on a compact Riemann surface X has a natural structure of a
smooth projective variety, the Jacobian of X. One may say that this
variety solves the problem of moduli of line bundles on a smooth
projective curve.

The corresponding moduli problem for (algebraic) vector bundles of
higher rank on X was envisaged by A. Weil 1938 in a famous paper
[19]. Naively formulated, the question is whether there is a natural
structure of a variety on the set of isomorphism classes of algebraic
vector bundles on X of a given rank and degree. However it turns out that
one can expect a structure of a variety only on a suitable subset of the
isomorphism classes of vector bundles.

2. Stable bundles and unitary bundles.

C. S. Seshadri and I were familiar with this paper of Weil already during
our student days at the Tata Institute. Around 1961-62 we started
thinking about the moduli problem for vector bundles on curves. Inspired
by a remark in the paper of Weil, we first proved that the set of
isomorphism classes of holomorphic vector bundles on X, which arise
from irreducible unitary representations of the fundamentals group of X,
has a natural structure of a complex manifold [15]. The proof used the
then recently appeared work of Kodaira and Spencer. It also became
clear to us that the basic problem was to give an algebraic
characterization of holomorphic bundles arising from unitary
representations of the fundamental group of X. Soon after doing this
work, we became aware of David Mumford’s talk at the 1962
International Congress of Mathematicians, in which he gave the

39



definition of stable and semi-stable vector bundles on X and announced
the result that the set of isomorphism classes of stable vector bundles of
fixed rank and degree form a quasi-projective variety [8, 9]. Recall that
a (holomorphic) vector bundle ¥ on X is said to be stable (respectively
semi-stable) if for every proper sub-bundle # of ¥ we have

deg W deg V deg W deg V
rank W < rank V(resp. rank W < rank V)’

where deg V= C; (V) [X], C, (V) being the first chern class of V.

The remarkable similarities between stable bundles and bundles arising
from irreducible unitary representations of the fundamental group (e.g. a
unitary bundles is semi-stable, which was not difficult to see) led us to
believe that the notion of stability would give an algebraic
characteristation of unitary bundles.

Seshadri and I proved, the following:

Theorem. A holomorphic vector bundle on X of degree zero on X is
stable if and only if it arises from an irreducible unitary representation of
the fundamental group of X [16].

As a consequence one sees that a bundle arises from a unitary
representation of the fundamental group if and only its indecomposable
components are of degree zero and stable.

We also gave a characterization of stable bundles which are not
necessarily of degree 0, in terms of irreducible unitary representations of
suitably defined Fuschian groups. This result implies that a set of
isomorphism classes of stable bundles of rank » and degree d is a smooth
projective variety if » and d are coprime.

The proof of the above theorem was based on the “continuity method”
which is a general principle first proposed by Klein and Poincaré in the
context of proving the uniformisation theorem for algebraic curves.
Guided by this principle, we proved the theorem by showing

1) that the space of isomorphism classes of bundles arising from
irreducible unitary representations of a given rank of the fundamental
group (resp. stable bundles of degree 0 of the same rank)

form a (Hausdorff) manifold M (resp. M)

2) that M, is connected and M, is an open and closed subset of
M;.
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3. The moduli space of semi-stable bundles.

The results stated above suggest a natural compactification of the space
of stable bundles of degree 0, namely the space of equivalence of classes
of unitary representations (not necessarily irreducible) of a given rank.
Seshadri proved that this compactification is a projective variety. Before
stating his result precisely we will introduce an equivalence relation
among semi-stable bundles.

Let 7 be a semi-stable vector bundle on X. Then V7 has a strictly
decreasing filtration by sub bundles

V:Vo ) V133Vk:(0)

such that for I < i ( k the bundle Wi = Vi /Vi+] is stable and satisfies [
EQ \F(deg Wi, rank Wi)l =0 EQ\F(deg V,rank V)[ .Moreover
the bundle Gr (V) = (ki=1 (Vi /Vi-l) s uniquely determined by V up to
isomorphism (Jordan-Holder theorem). We say that two semi-stable
bundles V1 and V2 are S-equivalent if Gr(V1) is isomorphic to Gr
(V2). Observe that two stable bundles are S-equivalent if and only if they
are isomorphic. It is clear, using the theorem in the previous section,
that the set of  S-equivalence classes of unitary representations is in
canonical bijective correspondence with the set of S-equivalence classes
of semi stable vector bundles of degree 0.

C. S. Seshadri, using geometric invariant theory, proved the following:

Theorem. There is a unique structure of a normal projective
(irreducible) variety

U (r, d) on the set of S-equivalence classes of semi-stable vector
bundles on X of rank r and degree d such that the following property
holds: if {V;,t e T} is an algebraic family of semi-stable bundles on X
of rank » and degree d parametrised by an algebraic variety 7, then the
map T — U (7, d), sendingt € T to the S-equivalence class of V;is a
morphism [18].

We shall call the variety given by the above theorem, the moduli space of
(semi-stable) vector bundles of rank #, and degree and denote it by U (7,
d).

The theorem stated above is also valid for a curve X over an
algebraically closed field of arbitrary characteristic.
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4. Study of moduli spaces.

This work was followed by an extensive and deep study of these moduli
space by S. Ramanan and myself. We first showed that that the smooth
points of U (¥, d) correspond precisely to stable bundles, except in the
case of rank 2 bundles of even degree on a curve of genus 2; in this
exceptional case the space is smooth [12]. We also determined explicitly
the moduli spaces of rank 2 bundles in the case of curves of low genus.
This work leads to surprising connections with classical algebraic
geometry, like the theory of quadratic complex of lines, Kummer
surfaces and the work of Coble on theta functions. For instance, by
identifying the moduli space of rank 2 bundles with trivial determinant
on a (non-hyperelliptic) curve of genus 3, with a quartic in P’ considered
by Coble, we were able to answer in the affirmative a question posed by
Coble regarding the cubic equations defining a Kummer variety of
dimension 3 [12, 14].

5. Moduli of curves and moduli of S (7, d).

This section also describes some work done in collaboration with S.
Ramanan. We will assume that (7, d) =I1. We denote by S (7, d) the sub
varity of U (r, d) corresponding to semi-stable bundles with a fixed line
bundle as determinant.

Theorem. The (canonically polarized) intermediary Jacobian of S (7, d)
corresponding to the third cohomology group is naturally isomorphic
to the Jacobian of the curve X [13]. (For rank 2 bundles the result was
first proved by D.Mumford and P. E. Newstead [10].)

As a consequence one sees that if X; and X;are two (projective, smooth)
curves such that the corresponding moduli spaces Sy, (r, d) and Sy, (7, d)
are isomorphic then X; and X, are isomorphic (This result was also
proved by A. Tjurin).

The following result [13] implies that any small deformation of the

moduli space Sy (¥, d) is of the form Sy, (v, d) where X, is deformation
of the curve X.

Theorem. 1) The group of automorphisms of S (¥, d) is finite and H' (S
(r,d), T) =0 for i =1
where T'is the tangent sheaf.

2)dim H' (S, (, d), T) = (3g-3), where g is the genus of X.

42



In the course of these investigations we introduced and exploited
systematically a certain correspondence between moduli spaces of
vector bundles on a curve. This correspondence, which we called “Hecke
correspondence”, plays a significant role also in the study of Geometric
Langlands theory.

6. Betti numbers of § (7, d).

The Betti numbers of S (r, d) were first calculated by P. E. Newsteasd
in the case r= 2, d =1, by topological methods [17]. Based on these
results G. Harder verified the Weil conjecture for S (2, ) in the case of a
curve defined over a finite field, at a time when the Weil conjecture was
not proved in general [4]. Harder observed in turn the Betti numbers of S
(2, 1) can be computed by arithmetical methods on the basis of the Weil
conjecture.

Harder's method was generalized in a joint paper of Harder and myself,
to bundles of arbitrary rank [5]. It was shown, in the case (7, d) =1, that
the {-function of S (¥, d) can be calculated from the - function on X.
This result, together with the Weil conjecture proved by P. Deligne,
gives a method for computing the Betti numbers of S (», d) when (¥, d)
=]

We proved in this paper that an arbitrary vector bundle £ on acurve X has
a unique filtration by vector sub bundles

O:F()CF[ (RPN CFk =F
satisfying

a) F;/ F,;is semi-stable for 7 =_1, e K
b) p (F/ Fr) >((Fi+l/ Fi) i=1,...k1

where for a vector bundle V (( 0) we put (( V) =deg V/itk V
This filtration, now called the Harder-Narasimhan filtration, and its
generalizations play an 1mportant role in various contexts, including

some in Number Theory.

7. Relationship with Physics: Gauge Theory and Conformal Fieid
Theory.

Although 1 was attracted to the problems considered above entirely

because of their intrinsic mathematical interest, it later emerged that
these problems are intimately connected with Gauge Theory  and
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Conformal Field Theory, which play a significant role in mathematical
physics. Some of my recent work was motivated and inspired by
problems suggested by these areas of physics. In turn, physicists used in
their work some of the results mentioned earlier.

Gauge Theory. An influential paper “Yang-Mills equations over
Riemann surfaces” by M.F. Atiyah and R. Bott, which investigated
moduli problems for vector bundles on Riemann surfaces from the point
of view of gauge theory, appeared in 1982 [1]. This paper introduced the
theory of vector bundles to a larger audience including physicists. Atiyah
and Bott gave a new method for

computing the Betti numbers of the moduli spaces S (r, d), when (r, d) =1
and also proved that these spaces are torsion free.

Conformal Field Theory. Problems arising in Conformal Field Theory
lead to studying linear systems on the moduli spaces S (r, d).Motivated
by this, I studied first in collaboration with J.M. Drezet, the Picard
group (of line bundles) on S (r, d) [3]. We proved that the moduli
spaces are locally factorial and determined their Picard groups. This
work enabled us to define generalized theta line bundles on these
varieties and their sections are called generalized theta functions. (These
bundles generalize the line bundles on the Jacobian determined by the
Riemann Theta divisor and its multiples).

In conformal field theory one associates certain spaces of “Conformal
Blocks™ using representations of affine Kac-Moody algebras. In a joint
work with S. Kumar and A. Ramanathan, I showed that the space of
conformal blocks is isomorphic to the space of generalised theta
functions, thus justifying in a rigorous way an important result of
interest both to mathematicians and physicists [7]. [The result was also
obtained by A. Beauville and Y. Laszlo)

Again suggested by results in Conformal Field Theory, a “Factorization
theorem” was proved for generalized theta functions; this relates the
vector space of generalized theta functions on the moduli space of vector
bundles on a curve of genus g with the vector space of sections of
certain generalized theta line bundles on the moduli spaces of (parabolic)
bundles of curve of genus (g-1). In the case of rank 2 bundles this was
proved by Ramadas and myself [11], while the higher rank case was
treated by Xiatao Sun.
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8. Generalisations.

The theory of vector bundles on curves has had considerable impact on
other areas like Theoretical Physics, topology of 3-manifolds and
Langlands Programme for function fields. The techniques of proofs in
the theory have been drawn from Analysis, Differential Geometry.
Algebraic Geometry, Number theory and Theoretical Physics.

In the case of higher dimensional algebraic varieties, the notion of
stability depends on the choice of the cohomology class of an ample line
bundle. The algebraic theory of stable bundles is fairly well developed
and a nice exposition is given in [6].

There have been various deep generalisations, relating differential and
algebraic geometry, of the theorem on stable and unitary bundles on
curves. In the case of curves, one may mention the theory of Higgs
bundles due to N. Hitchin. In the case of higher dimensional varieties,
N.Hitchin and S.Kobayashi conjectured a generalisation relating stable
bundles and Hermitian-Einstein metrics on holomorphic vector bundles.
This conjecture was proved by S. K. Donaldson and also by S.T.Yau and
K. Uhlenbeck. This generalisation plays a significant role in the
profound work of S. Donaldson on the differential topology of 4-
manifolds [2].
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